

TRANSPORT MODE CHOICE AND COMMUTING TO UNIVERSITY: A MULTINOMIAL APPROACH

Daniele Grechi grechi.daniele@uninsubria.it

Elena Maggi <u>elena.maggi@uninsubria.it</u>

Daniele Crotti daniele.crotti@uninsubria.it

SIET 2018 Milano, 20-22 June

OUTLINE

- BACKGROUND AND RESEARCH CONTEXT
- RESEARCH QUESTIONS
- LITERATURE REVIEW
- METHODOLOGY
- RESULTS AND DISCUSSION
- CONCLUSIONS, POLICY IMPLICATIONS AND FURTHER RESEARCH
 STEPS

BACKGROUND

- As well as hospitals, courts and public bodies, universities are distinctive elements of a territory, economically significant and occupational poles but also generators and attractors of traffic (Rodriguez and Joo, 2004; Lovejoy and Handy, 2011; Delmelle and Delmelle, 2012).
- Commuting to school (including university) is a typical car-dominant scenario where effective (or perceived) alternative means are not available to users
- Dichotomy between travel polycultures and monocultures (Millera, 2011; Lavery et al., 2013)
- Sustainable commuting policies

 to stimulate collective modal alternatives with a low environmental impact (Zhou, 2012)

RESEARCH CONTEXT UNINSUBRIA IN A NUTSHELL

- The University of Insubria (Uninsubria) is an Italian state university founded in 1998.
- It is placed in the North-Western part of Italy and it has two main poles, Varese and Como, which attract a growing number of students. The third minor site is in Busto Arsizio (Varese).

Role	Busto A.	Como	Varese	Total
Student	59	2661	7787	10507
T.A. Staff	6	91	223	320
Professors	12	264	217	493
Total	77	3016	8227	11320

RESEARCH QUESTIONS

RQ2: What are the main drivers of modal choice to/from Uninsubria?

RQ3: From a policy perspective, how commuters who travel to different poles (Varese, Como) give value to Pairwise t-tests alternative more environmental

friendly modes?

UNIVERSITY COMMUTING HABITS: SELECTED REVIEW

Authors	Methods	Results
Zhou (2012)	This paper studies university students (UCLA, Los Angeles, 2010 data) in the commuting and housing process in a predominant car context.	 Discounted transit pass increase the odds of alternative modes. Parking permits reduce them. Commute distance is positively related to car-pooling. Gender and age are correlated to public transit. Having classmates living nearby increases the odds of taking public transit.
Whalen et al. (2013)	The report, based on a survey of the McMaster University, in Hamilton, Canada, tries to underline the mode choice and the factor that can influence it.	Two model used (MNL and nested Logit) to identify that modal choices are influenced by a mixture of cost, individual attitudes, and environmental factors.
Danielis et al. (2016)	Estimation of the potential demand for CS using simulation model starting using different models to estimate the demands of car sharing (not only focused on students).	Transportation sector is useful to satisfy the commuter's needs and behavior in relation with psychological cost\benefit elements
Lavery et al. (2013)	4,154 university users (Canada). Ordered probit (number of feasible alternatives)	Active travellers: higher modality wrt to users of motorized modes. Density reduces the modality of users of local transit (buses).

METHODOLOGY

UNINSUBRIA MOBILITY SURVEY

- On-line survey (november 2017): all the university users (students, professors, technical/administrative staff) for each site (Varese, Como and Busto Arsizio)
- Structure of the questionnaire:
 - Socio-demographic data (age, gender, education, role, residence)
 - Commuting-related data (distance, frequency, costs, destination, number of means used)
 - Information related to car pooling/sharing attitude, bike sharing and green sustainability attitudes
 - Evaluation of existing/prospective policy measures (e.g., shuttle bus)

UNINSUBRIA MOBILITY SURVEY

SAMPLE

- Dut of 11,666 potential respondents, 2,816 interviews were gathered (about 24%)
- 2,795 valid data processing (adjustments due to misleading responses)

UNINSUBRIA MOBILITY SURVEY: PRIMARY DATA

Sample by category and destination					
City Students Professors T. A. Staff					
Varese	21%	62%	67 %		
Como	23%	15%	64%		
Busto Arsizio	17%	68%	67 %		

Due to little information we have excluded from the econometric analysis the observations on Busto Arsizio (only descriptive statistics).

Sample Characteristics VARESE

	Students	Professors	T.A. Staff
Age	23,76	51,5	47,09
Gender	M (58%)	F (56.29%)	M (74%)
Day per Week	3,9	3,6	4,7
Principal Means of T.	Car/Motorbike(63.36%)	Car/Motorbike(76.82%)	Car/Motorbike(78.38%)
Number of Means	1,55	1,32	1,12
Duration of the Trip(min.)	46	46	32
Distance	28 km	40 km	17 km
Monthly cost for transport	€ 68	€ 78,45	€ 64,36
Incidence of transport costs on Income(%)	No Income(57.8%)	Less than 5% (46.3%)	Between 5% and 10% (35%)

Sample Characteristics COMO

63

	Students	Professors	T.A. Staff
Age	23,49	50	45,63
Gender	M (69%)	F (60.32%)	M (62%)
Day per Week	4.1	3.5	4.98
Principal Means of T.	Rail (34.67%)	Rail (46%)	Car/Motorbike(77.6%)
Number of Means	1,65	1,57	1
Duration of the Trip(min.)	47	52	29
Distance	24,5 km	52 km	12 km
Monthly cost for transport	€ 68,82	€ 77,51	€ 58,63
Incidence of transport costs on Income(%)	No Income (54.4%)	Less then 5% (55.5%)	N.A. (34.5%)

Sample Characteristics BUSTO ARSIZIO

	Students	Professors	T.A. Staff
Age	24,6	52,5	54,5
Gender	M (73%)	M (75%)	M (75%)
Day per Week	4,6	4,8	4,87
Principal Means of T.	Rail (53%)	Rail (63%)	Car/Motorbike (75%)
Number of Means	1,86	1,87	1,5
Duration of the Trip(min.)	51	57	28
Distance	26,2 km	41,1 km	13,5 km
Monthly cost for transport	€ 80,56	€103,31	€ 62,75
Incidence of transport costs on Income(%)	No Income (47%)	Less then 5% (50%)	Between 5% and 10% (50%)

EVIDENCE OF CAR-DOMINANCE

UNINSUBRIA: A TALE OF TWO POLES?

Varese: Car dominant with a huge number of students and low quality public transport service. The campus is not in the centre of the city

Como: Public transport dominant with less students than Varese. No unique campus but more sites in the center of the city

METHODOLOGY ECONOMETRIC APPROACH

MULTINOMIAL LOGIT (MNL)

- The MNL model is used to investigate the commuting mode choice of Uninsubria users
 - Travel habits (dependent variable) grouped into three modes with varying environmental impact:
 Rail (train); Road_C (urban bus, extra-urban bus, car riding); Road_S (car, motorbike)
 - Biking and walking modes are excluded (sensitive to short distances only)
- $U_{ij} = \alpha + \beta_j x_i + \varepsilon_{ij}$ Utility from choice $j = (Rail, Road_C, Road_S)$ for the individual user i
- Explanatory variables (x_i) including:
 - Quantitative data: age, frequency, minutes, costs
 - Categorical variables: user type (T.A. staff, students, professors); residence (VA, CO and OTHER);
 destination (Varese, Como); ownership of private cars; car pooling attitude; use of university shuttle bus
 (only Varese)
 - Residence dummy: respondents are clustered using administrative data (ISTAT and law 59/97) to account for proximity-effects among users

	AGGRE (Pseudo R2		VAR (Pseudo R2	RESE 2: 0.4103)		0MO (2: 0.2410)
VARIABLES	Rail	Road_C	Rail	Road_C	Rail	Road_C
		O O C O T shalled:		a a == 4 dedude		0.00=1
Age	-0.0532***	-0.0481***	-0.0789***	-0.0576***	-0.0231	-0.0276
	(0.0126)	(0.0150)	(0.0173)	(0.0198)	(0.0187)	(0.0224)
Minutes	0.0620***	0.0334***	0.0735***	0.0363***	0.0457***	0.0314***
	(0.00407)	(0.00431)	(0.00532)	(0.00589)	(0.00684)	(0.00736)
Frequency	0.193***	0.290***	0.159**	0.269***	0.248***	0.344***
	(0.0517)	(0.0556)	(0.0639)	(0.0694)	(0.0911)	(0.0983)
Cost	-0.00889***	-0.0218***	-0.00715**	-0.0232***	-0.0136***	-0.0177***
	(0.00232)	(0.00253)	(0.00280)	(0.00314)	(0.00438)	(0.00462)
Staff	-0.526	0.475	0.302	0.583	-2.594***	0.553
	(0.424)	(0.510)	(0.512)	(0.585)	(0.873)	(1.194)
Student	-0.379	0.649	-0.883	-0.166	-0.0638	2.546**
	(0.410)	(0.583)	(0.556)	(0.712)	(0.593)	(1.204)
Car_own	-3.630***	-3.856***	-3.733***	-4.119***	-3.011***	-3.280***
	(0.248)	(0.244)	(0.297)	(0.292)	(0.461)	(0.462)
Shuttle_bus			1.463***	1.022***		
			(0.162)	(0.180)		
Car_pooling	-0.672***	-0.00465	-0.684***	0.319*	-0.760***	-0.542**
	(0.135)	(0.141)	(0.164)	(0.179)	(0.243)	(0.246)
VA	0.655	0.852***	-0.692**	0.886***		
	(0.406)	(0.260)	(0.338)	(0.238)		
OTHER	1.894***	0.0819			1.398***	-0.137
	(0.329)	(0.225)			(0.382)	(0.307)
Varese	-1.668***	-1.864***				
	(0.155)	(0.168)				
Constant	0.354	2.432**	0.943	1.663	0.269	-0.366
	(0.834)	(0.988)	(1.056)	(1.253)	(1.223)	(1.713)
Observations	2,586	2,586	1,914	1,914	672	672

Standard errors in parentheses; Significance levels: *** p<0.01, ** p<0.05, * p<0.1

PREDICTED PROBABILITIES

	RAIL	ROAD_C	ROAD_S
COMMUTING MODES (aggregate)	Predicted	Predicted	Predicted
	probability	probability	probability
CO#Como	0.122***	0.436***	0.443***
	(0.0326)	(0.0470)	(0.0481)
CO#Varese	0.0430***	0.127***	0.830***
	(0.0132)	(0.0253)	(0.0307)
OTHER#Como	0.469***	0.275***	0.257***
	(0.0288)	(0.0247)	(0.0241)
OTHER#Varese	0.228***	0.110***	0.662***
	(0.0166)	(0.0109)	(0.0195)
VA#Como	0.138***	0.602***	0.261***
	(0.0297)	(0.0466)	(0.0408)
VA#Varese	0.0683***	0.246***	0.686***
	(0.0159)	(0.0296)	(0.0347)
Observations	697	440	1452

Standard errors in parentheses; Significance levels: *** p<0.01, ** p<0.05, * p<0.1

COLLECTIVE MODES AND PREFERENCES: HOW DO THEY DIFFER BETWEEN UNIVERSITY DESTINATIONS?

	URBAN BUS	INTER-URBAN BUS	TRAIN	
Motivation	Test (Como — Varese)	Test (Como — Varese)	Test (Como — Varese)	
	Sample: Como=45 ; Varese=84	Sample: Como= 133 ; Varese= 76	Sample: Como=247 ; Varese=450	
Availability of private means	-1.23	-3.34***	-5.10***	
Economic convenience	1.40	-1.39	-2.51**	
Frequency service	2.20**	-1.04	1.78	
Low travel time	2.15**	2.82**	3.46***	
Intermodality	1.89 *	4.41***	1.67	
Stress level	1.39	0.78	1.47	
Parking problems	4.73***	6.16***	7.43***	
Environmental elements	1.93*	1.84	0.39	
Evaluation				
Affordability	1.54	-1.98*	-2.39**	
Time reliability	-0.39	-2.93***	-1.13	
Information	0.10	-1.47	-0.82	
Frequency	1.84*	-2.06**	0.05	
Tariff Integration	-0.47	-4.39***	-8.31***	
Intermodality	-1.15	-3.30***	-2.65**	

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

CONCLUSIONS, POLICY IMPLICATIONS AND FUTURE RESEARCH

- The availability of parking in Varese and the ease to reach the university location by public transport in Como create, within a single survey, two different universes.
- In the complete regression model the predominance of the car obscure some effects that can be highlighted in the "Cities Models" (e.g. Staff)
- Cluster mode analysis: the trip origin influences the modal choice
- Different evaluation of public transport services by users in Varese with respect to Como.
- Policy implication: Accessibility of the campus of Varese, evaluation of possible policy to improve the use of sustainable means of transportation (according to the local authorities)
- Using GIS technique it could be possible to implement a Nested Logit model

THANK YOU VERY MUCH FOR YOUR ATTENTION!

ANY QUESTIONS?

